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Abstract. In Akrotirianakis and Floudas (2004) we presented the theoretical foundations of a new
class of convex underestimators for C2 nonconvex functions. In this paper, we present computational
experience with those underestimators incorporated within a Branch-and-Bound algorithm for
box-conatrained problems. The algorithm can be used to solve global optimization problems that
involve C2 functions. We discuss several ways of incorporating the convex underestimators within
a Branch-and-Bound framework. The resulting Branch-and-Bound algorithm is then used to solve
a number of difficult box-constrained global optimization problems. A hybrid algorithm is also
introduced, which incorporates a stochastic algorithm, the Random-Linkage method, for the solution
of the nonconvex underestimating subproblems, arising within a Branch-and-Bound framework.
The resulting algorithm also solves efficiently the same set of test problems.
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1. Introduction

In this paper we present our computational experience with a new global opti-
mization algorithm that can solve within �-global optimality, problems involving
twice continuously differentiable functions. The general mathematical definition
of those problems is as follows

min
x

f �x�

s�t� hj�x�=0
 j=1
2
���
m1

gk�x��0
 k=1
2
���
m2

x∈X= �xL
xU �
 (1)

where x∈�n is the vector of variables, xL
xU ∈�n are the vectors of the lower and
upper bounds of the hyper-rectangular domain X⊆�n, f is the objective function
and hj�x�
gk�x� are the constraints of the problem. Problem (1) generally pos-
sesses many local minima, since the functions involved in it may be nonconvex.
There exist two broad categories of Global Optimization algorithms: (i) determin-
istic and (ii) stochastic. Deterministic Global Optimization algorithms (see for
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example, Al-Khayyal and Falk, 1983; Horst and Tuy, 1987; Tuy, 1987; Adjiman
et al., 1998b; Sherali and Alameddine, 1992; Ryoo and Sahinidis, 1996) guaran-
tee to reach an �-neighbourhood of the global minimum of problem (1) within a
finite number of iterations. On the other hand, in Stochastic methods (e.g., Gelatt
et al., 1983; Goldberg, 1987; Rinnoy-Kan and Timmer, 1987a; Schoen, 1991)
the probability of finding the global optimum of problem (1) goes to one as the
number of steps goes to infinity.
The main objective of this paper is to investigate the computational performance

of a Branch-and-Bound approach that uses the underestimators developed in
Akrotirianakis and Floudas (2004). The general structure of the algorithm is
similar to that of the �BB Global Optimization algorithm (Maranas and Floudas,
1994; Adjiman et al., 1998a; Floudas, 2000). The algorithm is designed in such a
way that it can accommodate both convex and nonconvex underestimators. If the
underestimators are convex then the lower bound is found by a local minimization
algorithm. When nonconvex underestimators are used then the global minimum of
the lower bounding problem is determined by a stochastic optimization algorithm.
The paper is structured as follows. Section 2 briefly discusses the fundamentals

of the new underestimators. Section 3 presents the Branch-and-Bound algorithm,
named G�BB, that uses the new underestimators to solve global optimization
problems. Section 4 discusses two versions of the G�BB algorithm, one with
convex underestimators and another one with nonconvex underestimators. Section
5 presents our numerical experience with both versions of the G�BB algorithm.
Finally, Section 6 concludes the paper and presents directions of future research.

2. The New Class of Convex Underestimators

The new underestimating function, L1�x���, of an arbitrary nonconvex function,
f �x�, is defined as follows

L1�x���=f �x�+��x��� (2)

where

��x���=−
n∑

i=1

�1−e�i�xi−xLi ���1−e�i�x
U
i −xi��

and �=��1
�2
���
�n�
T is a vector of non-negative parameters. In Akrotirianakis

and Floudas (2004), the following properties of the function L1�x���were proved.

PROPERTY 1. L1�x����f �x�, for all x∈ �xL
xU �, because ��x����0 for all
x∈ �xL
xU � and ��0.

PROPERTY 2. L1�x
C���=f �xC�, for every corner point xC of X, because

��xC���=0 for all xC ∈X.
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PROPERTY 3. There exist certain values of the parameters �i so that L1�x��� is
a convex function. This is due to the fact that the relaxation function ��x��� is
convex for every x∈X and �i�0, i=1
2
���
n. Hence if the parameters �i have
large enough values then all the non-convexities in the original function f �x� can
be eliminated, thereby producing a convex function L1�x���.

PROPERTY 4. The maximum separation distance of between the nonconvex
function f �x� and its underestimator LG�BB�x��� is

max
xL�x�xU

�f �x�−L1�x����=
n∑

i=1

�1−e
1
2 �i�x

U
i −xLi ��2 (3)

PROPERTY 5. The underestimators constructed over supersets of the current set
are always less tight than the underestimator constructed over the current box
constraints.

The values of the parameters �i, i=1
2
���
n are determined by an iterative
procedure that not only guarantees the convexity of the underestimator L1�x���
but also ensures that L1�x��� is tighter than the �BB underestimator

L�BB�x���=f �x�−
n∑

i=1

�i�xi−xL
i ��x

U
i −xi�

Recall that the value for each parameter �i is determined by the equation

�i=max
{
0
−1

2
f

ii
−∑

j �=i

max
{�f

ij
�
�f ij �

}dj

di

}
(4)

where f
ij
and f̄ij are the lower and upper bounds of �2f/�xixj as calculated by

interval analysis, and di=xU
i −xL

i 
i=1
2
���
n are positive parameters.
The initial values of the �i parameters are selected by solving the system of

non-linear equations

!i+�2
i +�2

i e
��xUi −xLi �=0
 i=1
2
���
n (5)

where !i�0, i=1
2
���
n. The parameters !i convey second order characteristics
of the original nonconvex function into the construction process of the under-
estimator. Candidate values for these parameters can be provided by the scaled
Gerschgorin method (Adjiman et al., 1998b), that is

!i=max
{
0
−f

ii
−∑

j �=i

max
{�f

ij
�
�f ij �

}dj

di

}

 i=1
2���
n (6)
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Note that,

�i=
1
2
!i
 i=1
2���
n (7)

In Akrotirianakis and Floudas (2004), we proved two important results regard-
ing the relationship between the maximum separation distances between f �x� and
the two underestimators L1�x��� and L�BB�x���. Here we present the theorems
without their proofs.

THEOREM 1. Let �=��
1

�

2

���
�

n
�T be the solution of system (5), with !i

defined by (6). Then, the two underestimators L1�x��� and L�BB�x���, where

�=
(
4�1−e0�5�1�x

U
1 −xL1 ��2

�xU
1 −xL

1 �
2


���

4�1−e0�5�n�x

U
n −xLn ��2

�xU
n −xL

n �
2

)T

(8)

have the same maximum separation distance from f �x�.

THEOREM 2. Let �=��1
�2
���
�n�
T be the values of the � parameters as

computed by (4). Then, the two underestimators L1�x��� and L�BB�x���, where

�=
(
2log�1+√

�1�x
U
1 −xL

1 �/2�

xU
1 −xL

1


���

2log�1+√

�n�x
U
n −xL

n �/2�

xU
n −xL

n

)T

(9)

have the same maximum separation distance from f �x�.

The above two theorems reveal that for any �∈ ��
�� there exists an �∈ ��
��,
such that the underestimators L1�x��� and L�BB�x��� have the same maximum
separation distance from the nonconvex function f �x�. From all these pairs of
underestimators, the only one that is known to be convex a priori is L�BB�x���,
since this is the one resulting from the classical �BB method. However, for
most arbitrarily nonconvex functions the underestimators L�BB�x��� and L1�x���
are convex within a large portion of the intervals ��
�� and ��
�� respectively.
Based on the above observations, it is natural to search for a vector � in the
interval ��
�� or for a vector � in the interval ��
��, so that at least one of the
underestimators L1�x���, L�BB�x��� is convex.
In Akrotirianakis and Floudas (2004), we proposed an approach that iteratively

determines, using interval analysis, the minimum values of the � or � parameters
that result in an underestimator that is convex and tighter than the classical �BB
method. The details of that algorithm are presented in Section 4.
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3. The G�BB Global Optimization Algorithm

In this section the overall description of the Branch-and-Bound algorithm, named
G�BB, that uses the new underestimators is presented. As in the �BB algorithm,
the G�BB algorithm locates the global optimum of the nonconvex problem (1)
by using an enumeration tree. Two converging sequences of lower and upper
bounds on the global optimum of problem (1) are generated. Each lower bound
is determined by solving a convex optimization problem that derives from the
original nonconvex problem where the nonconvex functions have been replaced
by the convex underestimating functions described in the previous section. Upper
bounds are generated by solving the original nonconvex problem locally using as
starting point the optimum solution of the corresponding lower bounding problem.
The sequence of lower bounds of the global optimum is monotonically non-

decreasing as the Branch-and-Bound tree expands. This is achieved by keeping a
list of all the lower bounds that have been generated so far in increasing order and
partitioning the subdomain of the problem that corresponds to the first element in
the list, that is the problem with the minimum lower bound. The partitioning of
the subdomain is done by bisecting its longest subinterval, say �xL

k 
x
U
k �, provided

that the variable xk participates in at least one nonconvex term in the original
problem (1). As far as the sequence of the updated upper bounds is concerned, it
is monotonically non-increasing. This is achieved by storing only the minimum
of all previously found upper bounds.
Furthermore, from Property 5 of the underestimating function L1 and Eq. (3), we

can conclude that its maximum separation distance from the nonconvex function
that underestimates goes to zero, as the size of the subinterval �xL
xU � goes to
zero. This implies that, as the current subinterval �xL
xU � reduces to a point,
the maximum separation distance of every nonconvex function in the nonconvex
problem (1) from its convex underestimatior becomes zero.
The basic steps of the G�BB method are described in Algorithm 1. Through-

out the algorithm, P�xL
Iter
xU
Iter� and PLOW�x
L
Iter
xU
Iter� represent the original

nonconvex optimization problem (1) and its lower bounding problem at iteration
Iter respectively, with x∈ �xL
Iter
xU
Iter�.

Algorithm 1. The G�BB Algorithm

STEP 1: Initialization
The following quantities are initialized: convergence tolerance: �c >0;
feasibility tolerance: �f >0; iteration counter: Iter=1; current subdo-
main at Iter=1: �xL
Iter
xU
Iter�= �xL
xU �; list of unsolved nodes: %=
��xL
Iter
xU
Iter��; LBD=−
; UBD=
; the initial starting point, xc
Iter,
is randomly generated.

STEP 2: Update of the upper bound UBD
Remove the first element of the list of unexplored nodes %.
Solve the nonconvex optimization problem P�xL
Iter
xU
Iter� locally,
within the current subdomain. Let xIter

UP be its optimum solution.
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If xIter
UP is �f feasible and f �xIter

UP�<UBD then update the upper bound
on the global optimum of the original problem, that is, UBD=f �xIter

UP�
and x∗=xIter

UP .
STEP 3: Solution of the Lower Bounding Problem and Update of LBD

Construct the lower bounding problem, PLOW�x
L
Iter
xU
Iter�, by replacing

all arbitrarily nonconvex terms in the original problem, P�xL
Iter
xU
Iter�,
by underestimating functions defined by (2).
Solve the lower bounding problem PLOW�x

L
Iter
xU
Iter�. Let xIter
LOW be

its optimum solution. Also let Lf
1 �x��

f � be the underestimator of the
objective function of the problem PLOW�x

L
Iter
xU
Iter�. Update LBD, if
L

f
1 �x

Iter
LOW��

f ��LBD, by setting LBD=L
f
1 �x

Iter
LOW��

f �.
The current starting point is updated so that xc
Iter+1=xIter

LOW.
STEP 4: Fathoming or Branching

If L
f
1 �x

Iter
LOW��

f �−UBD��c then the current node can be safely fath-
omed.
Otherwise, the current subdomain is partitioned into two subdomains, by
bisecting the largest component interval. That is, the current subdomain
�xL
Iter
xU
Iter� is partitioned into the following two subdomains

(
�xL
Iter

1 
xU
Iter
1 �
���


[
xL
Iter
k 


xU
Iter
k +xL
Iter

k

2

]

���
�xL
Iter

n 
xU
Iter
n �

)T

and (
�xL
Iter

1 
xU
Iter
1 �
���


[
xU
Iter
k +xL
Iter

k

2

xU
Iter

k

]

���
�xL
Iter

n 
xU
Iter
n �

)T

where �xL
Iter
k 
xU
Iter

k � is assumed to be the largest component interval of
the current subdomain.
The two new subdomains are then stored in the list % at the appropriate
places so that the order of the list is kept in increasing order with respect
to the lower bounds.

STEP 5: Convergence check
If %=∅ then STOP. The global optimum solution of the original prob-
lem is x∗ and its value is f �x∗�.
Otherwise, increase the counter, Iter= Iter+1 and GoTo Step 2.

4. Computational Studies

In this section we present a computational study regarding the efficiency of the
G�BB algorithm and the new class of underestimators. We have implemented
two versions of the G�BB algorithm. In the first version the underestimators
used throughout the enumeration tree are convex. That is achieved by calculating
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proper values for the � parameters that give rise to convex underestimating
functions. We denote this version as the deterministic G�BB method.
The second version of the G�BB algorithm uses underestimators that may

be nonconvex. The values of the � parameters used in the definition of the
underestimator L1�x��� are given by the solution of the system (5). That is,
�i=�

i
, for all i=1
2
���
n. Since there is no guarantee that the lower bounding

problem is convex, we have developed a stochastic approach to solve it. We
denote the second version as the hybrid G�BB method, since it combines a
stochastic method within a deterministic Branch-and-Bound framework.
In the remaining of this section we provide a more detailed description of the

two versions of the G�BB algorithm.

4.1. THE DETERMINISTIC G�BB METHOD

The deterministic version of the G�BB method employs an iterative procedure
that determines the appropriate values for the � parameters that yield a convex
underestimator. The procedure searches for a vector �∈ ��
�� so that the cor-
responding �∈ ��
��, produces an underestimating function L�BB�x��� that is
convex. The search starts by setting �=� and �=� and then checking whether
L�BB�x��� is convex. This is done by using the scaled Gerschgorin method to
determine lower bounds on the eigenvalues of the Hessian matrix ( 2L�BB�x���.
For those lower bounds that are negative, we bisect the intervals of the corre-
sponding variables, thereby generating a number of sub-domains that are stored
in a list, denoted by %2. Then the algorithm checks whether ( 2L�BB�x��� is
positive semi-definite in each of those sub-domains using again the scaled Ger-
schgorin method. If the size of the list, %2, exceeds a certain number of nodes
then ( 2L�BB�x��� is most likely not positive semi-definite, and the values of all
�i’s are increased by a prespecified positive quantity, )>0, and the correspond-
ing values of the new �i’s are calculated. The algorithm tries to verify whether
( 2L�BB�x���, with the new increased �, is positive semi-definite. It continues in
this manner until the list %2 becomes empty. In that case the corresponding �
makes the Hessian matrix, ( 2L�BB�x���, positive semi-definite for all x∈X and
consequently L�BB�x��� a convex underestimator. The main reason for using the
underestimator L�BB�x��� instead of the underestimator L1�x��� is that, it is eas-
ier to verify the positive definiteness of the matrix ( 2L�BB�x��� than that of the
matrix ( 2L1�x���.
The detailed algorithmic steps are as follows:

Algorithm 2. Generation of convex underestimators

STEP 1: (Initialization) Set K=1
J=1, Jmax=2n+1, )=1�1 XJ =X, %2=�XJ�
and �i
K=�

i
STEP 2: Use (8) to calculate the �i
K
 i=1
2
���
n that correspond to the �i
K ,

i=1
2
���
n, and form the underestimator L�BB�x��K�.
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STEP 3: If the maximum separation distance of L�BB�x��K� from f �x� is less
than the maximum separation distance of L�BB�x��� from f �x� then
GoTo Step 4.
Otherwise, adopt as underestimator the classical �BB underestimator,
L�BB�x���, and STOP.

STEP 4: Check whether L�BB�x��K� is convex:
Repeat

Step 4.1: Remove the last element from the list %2 of unexplored sub-
domains. Let us name that sub-domain Xlast

Step 4.2: Form the interval Hessian �( 2L�BB�x��K�� with x∈Xlast

Step 4.3: Use (6) to find lower bounds on each eigenvalue of the interval
Hessian �( 2L�BB�x��K�� in Xlast.

Step 4.4: Form the set I−=�i -!i <0�.
Step 4.5: If I− �=∅, bisect all intervals �xL

i
last
x
U
i
last� with i∈ I−, and add

them at the end of the list %2.
Step 4.6: Set J=J+2�I−�−1, where �I−� represents the cardinality of

the set I− (i.e., a total of 2�I−� new sub-domains have been gen-
erated and added to the list and one node have been removed).

Until (%2=∅ or J=Jmax)
STEP 5: If %2=∅ then STOP. The Hessian ( 2L�BB�x��K� is positive semi-

definite for all x∈X and L�BB�x��K� is a convex underestimator.
Also the underestimator L�BB�x��K� is tighter than the underestimator
L�BB�x��� obtained by the classical �BB method.
Otherwise, increase the values of all �i
K
i=1
2
���
n by setting
�i
K+1=)�i
K . Set K=K+1 and GoTo Step 2.

Termination of Algorithm 2 with a convex underestimator of f �x� is guaranteed
by the fact that L�BB�x��� is known a priori to be convex underestimator.

4.2. THE HYBRID G�BB METHOD

The underestimators used in the hybrid G�BB method are formed by setting �i=
�i for all i=1
2
���
n. Although, the underestimator L1�x��� may be nonconvex
function, it is ‘less’ nonconvex than the function it underestimates. Hence, the
regions of attraction of the local minima of every underestimator are much
larger than those of the corresponding nonconvex function. This is a direct
consequence of the fact that the Hessian of the new underestimating function
is the sum of the Hessian of the original nonconvex function and the positive
definite Hessian of the relaxation term. Hence, the resulting underestimator, if
it is nonconvex, it will posses fewer local minima than the original function.
A stochastic global optimization technique would, therefore, locate the global
minimum of the underestimating function faster than the global minimum of the
original nonconvex function.



A NEW CLASS OF CONVEX UNDERESTIMATORS 257

Based on the above observation we have developed a stochastic method to
solve the lower bounding problem. At every node of the tree we use the Random-
Linkage stochastic optimization algorithm, developed by Locatelli and Schoen
in (Locatelli and Schoen (1999)). The general definition of the Random-Linkage
algorithm is described in Algorithm 3.

Algorithm 3. The Random-Linkage Algorithm

STEP 1: Set k=0;
STEP 2: Sample a single point xk+1 from the uniform distribution over the set

X;
STEP 3: Start a local search from Xk+1 with probability:

pk�/k�xk+1�� (10)

with

/k�x�=min�x−xj - j=1
2
���
k and f �xj�>f�x�� (11)

It is understood that /k�x�=
 if there is no j such that f �xj�>f�x�;
STEP 4: If k>kmax then STOP. Otherwise set k=k+1 and go to Step 2.

The function pk represents a probabilistic threshold that allows the start of the
local optimization solver from the current sample point. It is defined as follows:

pk�/�=
{
1
 if />rk+1�1�1

0
 otherwise

where

rk+1�1�1 =2−1/2

(
3�1+d/2�4�X�1

logk
k

)1/d

and 3�·� is the gamma distribution function, 4�·� is the Lebesque measure for
the set X, and 1 is a user defined parameter. The parameter kmax represents the
maximum number of iterations that Algorithm 3 is allowed to sample the feasible
region of the current node. In our implementation we used kmax=20.

5. Numerical Results

In this section we present the computational performance of the two versions of
the G�BB algorithm. We have used both versions to solve several box constrained
NLP problems. The problems we considered are difficult since they possess
hundreds or thousands of local minima. In all cases the G�BB algorithm found
the global minimum efficiently. All the computational results were obtained using
an HP9000/730 workstation.
This section is organized as follows. In Section 5.1 we provide the mathematical

definition of each test problem as well as the number of local minima it possesses.
In Section 5.2 we discuss the performance of the G�BB algorithm.
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5.1. TEST PROBLEMS

PROBLEM 1. The Levy function (Ali and Torn (1999)) is defined as follows

f �x�=sin2�32x1�+
n−1∑
i=1

�xi−1�2�1+sin2�32xi+1��+

+�xn−1��1+sin2�22xn��

where n=4, x∈X= �−10
10�n. The function possess 7100 local minima and
its global minimum is X∗=�1
1
1
−9�752356�T with objective function value
f ∗=−11�504403.

PROBLEM 2. The Shubert function (Shubert (1972)) is defined as follows

f �x�=−
n∑

i=1

5∑
j=1

j sin��j+1�xi+j�

where n=2, x∈X= �−10
10�n. The function possess 400 local minima and its
global minimum is achieved in the following 9 different points



X∗
1

X∗
2

X∗
3

X∗
4

X∗
5

X∗
6

X∗
7

X∗
8

X∗
9



=




�−6�774576
−6�774576�T

�−6�774576
−0�491391�T

�−6�774576
5�791794�T

�−0�491391
−6�774576�T

�−0�491391
−0�491391�T

�−0�491391
5�791794�T

�5�791794
−6�774576�T

�5�791794
−0�491391�T

�5�791794
5�791794�T




with objective function value f ∗=−24�062499.

PROBLEM 3. The following function is taken from Zhu (2002)

f �x�=−1
2

n∑
i=1

�x4
i −16∗x2

i +5xi�

where n=7, and x∈X= �−5
2�n has 2n local minima. Its global minimum is
achieved at X∗=�−2�90354
−2�90354
���
−2�90354�T .

PROBLEM 4. The Hansen function (Hansen (1980)) is defined as follows

f �x�=
5∑

i=1

�icos��i−1�x1+i��
5∑

j=1

�j cos��j+1�x2+j��
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where n=2, and x∈X= �−10
10�n. The function has 760 local minima. Its global
minimum is achieved at the following nine different points




X∗
1

X∗
2

X∗
3

X∗
4

X∗
5

X∗
6

X∗
7

X∗
8

X∗
9



=




�−7�589893
−7�708314�T

�−7�589893
−1�425128�T

�−7�589893
4�858057�T

�1�306708
−7�708314�T

�1�306708
−1�425128�T

�1�306708
4�858057�T

�4�976478
−7�708314�T

�4�976478
−1�425128�T

�4�976478
4�858057�T




with objective function value f ∗=−176�541793.

PROBLEM 5. The following function was proposed by Trefethen (2002)

f �x�=esin�50x�+sin�60ey�+sin�70sin�x��+sin�sin�80y��−
−sin�10�x+y��+�x2+y2�/4

where x∈X= �−1
1� and y∈Y = �−1
1�. The function has 2400 local minima.
It global minimum is X∗=�−0�02440307955988
0�210612427679� and the cor-
responding objective function value is f �X∗�=−3�306868647475.

PROBLEM 6. The Hartman function (Jansson and Knuppel (1994)) is defined as
follows

f �x�=−
4∑

i=1

cie
−∑n

j=1Aij �xj−Pij �
2

where x∈X= �0
1�n. If n=3 the data of the problem is as follows

A=




3 10 30
0�1 10 35
3 10 30
0�1 10 35



 c=




0�1
0�2
0�2
0�4



 P=




0�3689 0�1170 0�2673
0�4699 0�4378 0�7470
0�1091 0�8732 0�5547
0�03815 0�5743 0�8828


�

The function achieves its minimum at X∗=�1�14525
5�555231
8�526� and the
corresponding objective function value is f �X∗�=−3�861305797098.

PROBLEM 7. The Griewank function (Griewank (1981)) is defined as follows

f �x�=
n∑

i=1

x2
i

4000
−

n∏
i=1

cos
(

xi√
i

)
+1
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where n=2 and x∈X= �−500
700�n. The function has more than 500 local
minima and its global minimum is achieved at the origin X∗=�0
0�.

PROBLEM 8. The following problem is taken from (More et al. (1981))

f �x�=
m∑
i=1

�2+2i−�eixi+eix2��2

where m=10. The global minimum of this problem is

X∗=�0�25782484
0�257824896�

and the corresponding objective function value is f �X∗�=124�3621823719.

PROBLEM 9. This problems is also taken from (More et al. (1981))

f �x�=
11∑
i=1

�yi−�x1ui�ui+x2��/�ui�ui+x3�+x4��
2

where ui=1/bi, b=�0�25
0�5
1
2
4
6
8
10
12
14
16� and

y=�0�1957
0�1947
0�1735
0�1600
0�0844
0�0627
0�0456


0�0342
0�0323
0�0235
0�0246�

The global minimum of this problem is

X∗=�0�19283049
0�1908834
0�123118232
0�13578297�

and the corresponding objective function value is f �X∗�=0�000307486.

PROBLEM 10. This problems is also taken from (More et al. (1981))

f �x�=
m∑
i=1

[
�x1+tix2−eti �2+�x3+x4sin�ti�−cos�ti��

2
]2

where m=20 and ti= i/5. The global minimum of this problem is

X∗=�−11�5944325
13�2036530
−0�4034240038
0�236470548�

and the corresponding objective function value is f �X∗�=85822�20171974.

PROBLEM 11. This problems is taken from (van Hentenryck et al. (1997))

f �x�= 1
400

m∑
i=1

x2
i −

m∏
i=1

cos
(

xi√
i

)
+1

where m=5 and x∈�−10
10�m. The value of the objective function at the global
minimum is f �X∗�=0�0.
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5.2. COMPUTATIONAL RESULTS AND DISCUSSION

Both versions of the G�BB algorithm solved successfully all the test problems
described in the previous section. This was expected for the Deterministic ver-
sion since the underestimators used in the Branch-and-Bound tree are convex.
The fact that the Hybrid version converged to the global minimum is particu-
larly encouraging, since there is no guarantee that the underestimators, generated
throughout the tree, are convex.
The performance of the two versions of G�BB as well as the performance of the

classical �BB method is shown in Tables 1 and 2. The first observation, derived
from Table 1, is that the classical �BB method always requires to generate more
nodes, before it reaches the global optimum, than both versions of the G�BB
method. This is expected, because the underestimators used by �BB are looser
than those used by G�BB. Another observation is that the Hybrid G�BB method
performs better than the deterministic G�BB method. The difference between the
two versions is getting larger as the number of local minima and the number of
variables of the problem increases. Also, from Table 2 we can see that the �BB
method usually needs less CPU time than the deterministic version of G�BB. On
the other hand, the hybrid versions of the G�BB method usually requires much
less CPU time than the �BB method.
The above observations suggest that the convexity verification of the new

underestimators, although it provides guarantees that the global optimum will be
reached, increases the computational effort required. This is evident in the tests
3–7 where the �BB method although it uses looser underestimators outperforms
the deterministic G�BB method. One can, therefore, readily realize the trade off
between the tightness of the underestimators and the computational work involved
in determing those underestimators.
However, the approach taken in the hybrid G�BB version seems to be less

expensive and robust. The main reason for the efficiency of the hybrid version is
the fact that the new underestimators are tighter and, if they are nonconvex, they

Table 1. Total number of nodes

Problem �BB Deterministic G�BB Hybrid G�BB

1 15238 9256 5957
2 4282 4250 1008
3 �n=5� 1029 1024 814
3 �n=7� 8533 3616 2170
4 2820 1165 902
5 5097 3268 2177
6 2719 1736 1273
7 4598 3904 3216
8 118 61 40
9 62831 40873 38238

10 6168 4418 2971
11 4543 3360 2512
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Table 2. CPU time (in seconds)

Problem �BB Deterministic G�BB Hybrid G�BB

1 118�81 98�23 68�34
2 38�34 34�78 21�85
3 �n=5� 10�30 45�59 10�00
3 �n=7� 98�91 196�78 61�45
4 22�69 33�12 16�86
5 39�67 17�22 8�10
6 28�86 69�67 38�41
7 30�82 92�11 49�56
8 1�18 0�49 0�56
9 1525�05 2786�55 1781�02
10 243�45 68�92 26�86
11 108�81 120�97 58�83

have much less local minima than the original nonconvex function. This enables
the stochastic optimization algorithm we use, to locate the global minimum of
the underestimator efficiently (i.e., it requires a small number of restarts). In all
of the above test problems we observed that the number of local searches is kept
small throughout the enumeration tree.

6. Conclusions and Future Work

In this paper we presented our computational experience for box constrained
NLPs with a new class of convex underestimators. The underestimators were
incorporated within a Branch-and-Bound framework and the resulting algorithm,
denoted as G�BB, was used to solve twice continuously differentiable problems
to global optimality. We have implemented two versions of the G�BB algorithm.
The first version, denoted as deterministic G�BB, uses underestimating functions
that are always convex. This is guaranteed by calculating, using interval analysis,
appropriate values for the � parameters so that the resulting underestimator
L1�x��� is convex function. The second version, denoted as hybrid G�BB, does
not require the underestimators to be convex. The possible nonconvexity of
the underestimators is handled by solving the lower bounding problems by a
stochastic optimization method.
From the numerical results we conclude that the hybrid G�BB variant is

more efficient than the deterministic G�BB. This result is particularly interesting
since it indicates that nonconvex underestimators which possess larger regions of
attraction than the corresponding nonconvex functions, together with a stochastic
optimization solution technique can enhance the performance of a Branch-and-
Bound algorithm for global optimization. In a future publication we shall present a
study of the new class of underestimators when they are used to solve constrained
nonlinear optimization problems.
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